

Detect, Scale, Extract: Product and Price Recognition in Promotional Flyers using YOLO and OCR

Client: VG Lab

Agenda

- 1. Introduction
- 2. Methodology Overview
- 3. Experimental results
- 4. OCR Pipeline
- 5. FastAPI Deployment
- 6. Demo of System (10 minutes)
- 7. Risk Management
- 8. Limitations and Future Work
- 9. Discussion
- 10. Conclusion

1. Introduction

The Challenge

Problem Definition

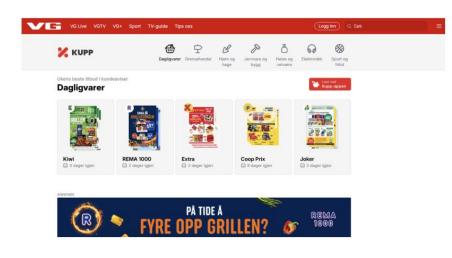
What is exactly the problem we are trying to solve?

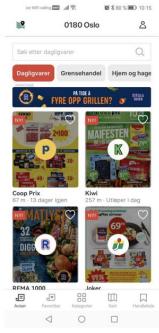
Main Issue: Lack of Automation

- Detect product images
- Exact product names and prices
- Identify their positions on a flyer page

Motivation and The Kupp Application

Goal: Help users save time and money


Motivation:


- Automate flyer data extraction process
- Improve the speed and reduce human error
- Deliver real-time, structured and accurate deal information

Motivation and The Kupp Application

Key Tools

Challenges

- 1. Flyer Complexity & Design Variability
 - a. 3 for 2 deals
 - b. Krone-Marked
- Lack of Specialized Training Data
 - a. Brown Cheese
 - b. Caviar on Tube
- 3. Technical Limitations
 - a. Limited memory
 - b. Computing power

Kaviarmix 175g Mills

34,90 kr

199,43 kr/kg

Fløtemysost 480g Synnøve

61,90 kr 128,96 kr/kg

Research Question

"How can cutting-edge Al tools like YOLO and OCR be applied to automatically extract product and price information from complex promotional flyers?"

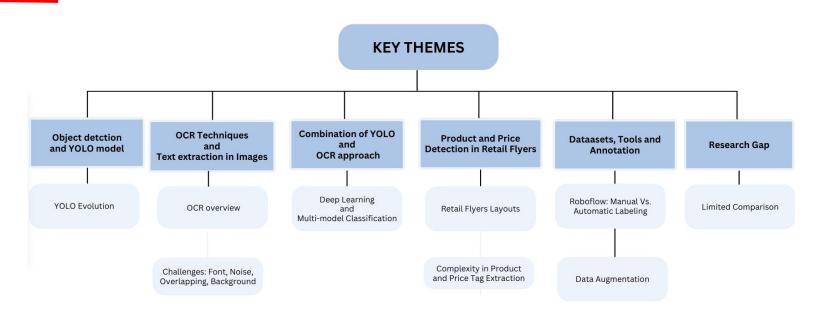
2. Literature review

Two key tools:

- YOLO for object detection
- OCR for text extraction (PaddleOCR, EasyOCR and Tesseract)

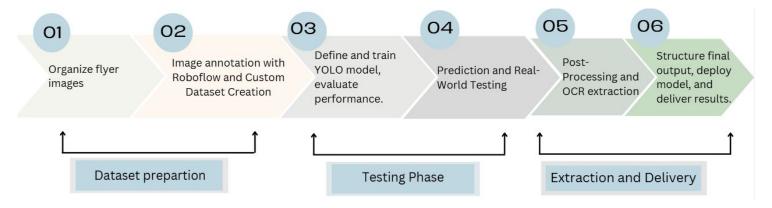
Researched terms:

- "YOLO models object detection"
- "OCR in image-based text extraction"
- "Product and price detection in retail flyers"


Concept Matrix

	Study	YOLO	OCR	Detection in Retail Flyers	Tools, Dataset, Annotation	Relevance
1.	An Overview of the Tesseract OCR Engine (Smith, 2007)	-	x	-	Tesseract OCR engine, layout analysis, page segmentation models	Supports understanding of text detection and segmentation for flyer analysis.
2.	Grocery product detection and recognition (Franco, Maltoni, and Papi, 2017)	x	x	x	Bow and CNN	Combining YOLO and OCR for retail. Addresses dataset challenges, manual labeling, and color normalization.
3.	Recognition and classifying sales flyers using semi-supervised learning (Mosquera and Genc, 2019)	-	x	x	Faster R-CNN, CTPN, Microsoft OCR, CNN a MLP, 600 flyers (3422 images)	Automated flyer data extraction for marketing and retail analytics.
4.	Text Recognition in the Wild. (Chen et al., 2021)		x		Survey of OCR models + CRNN, attention-based methods	Supports OCR model selection and evaluation.
5.	Data Augmentation Methods Applying Grayscale Images for Convolutional Neural Networks in Machine Vision (Wang and Lee, 2021)	-	0.51		Grayscale conversion, CNN robustness testing	Supports preprocessing strategies for flyer text recognition under
6.	Colorectal Polyp Image Detection and Classification through Grayscale Images and Deep Learning. (Hsu et al., 2021)	-	X	x	Integration of CNN and OCR, Hybrid visual-text model	Relevant for identification of text: integrates picture and OCR processing for improved text interpretation.
7.	Automatic Text Extraction from Digital Brochures: Achieving Competitiveness for Mauritius Supermarkets (Chuttur et al., 2021)	-	x	x	Text extraction of PDF format, OCR	Directly related to retail flyers format demonstrating analysis through OCR pipelines in retail settings.
8.	A deep learning framework for grocery product detection and recognition (Selvam and Koilraj, 2022)	x	x	х	YOLOv5, CSPDarknet, PANet, ResNet50, Bi-LSTM, CTC-Attention	Combines object and text detection fo grocery products.

9.	Content Extraction from Marketing Flyers (Nair, 2022)	X	-	X	YOLOv4, COCO dataset, manual annotation	Demonstrates YOLO's potential for flyer object detection.
10.	Design features of grocery product recognition using deep learning (Gothai et al., 2022)	x	-	-	YOLOv5, feature-based classification	Retail shelf monitoring and product recognition.
11.	Data Augmentation in Training CNNs: Injecting Noise to Images (Akbiyik, 2023)	-	-	-	Gaussian noise injection, CNN training optimization	Enhances understanding augmentation techniques to improve generalization ir image models like yolo used in retail detection.
12.	A review of recent advances and challenges in grocery label detection and recognition (Guimarães et al., 2023)	x	x	x	YOLO, OCR, STR, data augmentation	Combining visual and textual data for fine-grained product classification.
13.	Object detection for retail product recognition (Pannoy, Nonsiri, and Makdee, 2024)	x	-	-	YOLOv8 (nano, small, medium, large, extra-large), Grozi-120, SKU110K	Improves product detection accuracy in retail settings.
14.	Real-Time Detection and Recognition of License Plate Using YOLO11 Object Detection Model. (Vempati 2024)	x	x	-	YOLOV11, Google Vision OCR, EasyOCR, Roboflow annotation	Real-time automated license plate recognition for intelligent traffic systems.
15.	Role of Computer Vision in Retail Stores (Patel, 2024)	x	-	-	YOLO, hyperparameter tuning, vision + NLP, multimodal classification	Supports real-time product recognition in autonomous retail environments
16.	A Hybrid Approach to Detect and Identify Text in Picture (Wydyanto et al., 2024)		x	x	Hybrid DL methods combining CNN and OCR	Applicable to retail flyers requiring both visual and textual interpretation, demonstrating efficient text recognition in complex visual environments.
17.	YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review (Hidayatullah, 2025)	x	-	-	Literature review, source code analysis, architecture diagrams	Provides insights into YOLO model evolution for real-time tasks.
18.	A Unified framework for text extraction and plagiarism detection in image - based content using OCR and NLP (Palvadi, 2025)	-	x	ñ	OCR + NLP integration pipeline	Enhances text extraction and plagiarism detection from image-based content.
19.	Text extraction from image using OCR (Rajmod et al., 2025)	-	x	x	Tesseract OCR, Python, Streamlit, SVM, image preprocessing	Enhances retail flyer analysis and document digitization.
20.	Real time object recognition for advanced driver assistance systems (ADAS) using Deep learning on edge devices (Dhatrika, 2025)	x	-	-	YOLOv9, data augmentation, edge deployment	Supports autonomous driving with real-time object detection

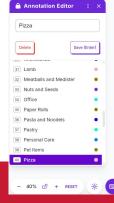


SIX Key Themes

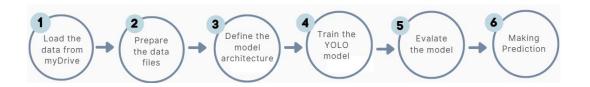
3. Methodology Overview

3 Phase pipeline:

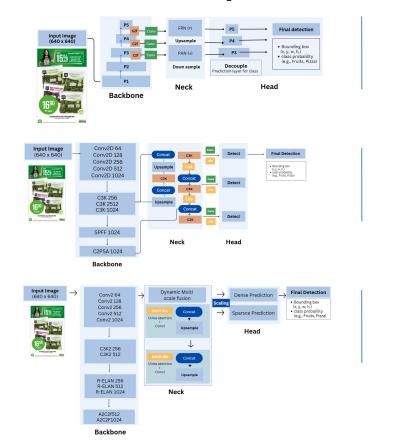
- 1. Data Preparation (Annotation with Roboflow)
- 2. Testing Phase (Model Training YOLOv8/11/12)
- 3. Extraction and delivery (OCR and API Deployment)


3.1 Custom Dataset and Annotation

- Source: 200,000+ flyers provided by VG Lab (PDFs and images)
- Filtered: Selected 6,000 high-quality flyer images for training
- Annotation Tool: Roboflow used to label products and price tags
- Annotation Types:
 - **Product Detection:** Multi-class (e.g., dairy, snacks, meat, etc.)
 - Price Detection: Single-class ("price tag")
- Final Dataset:
 - **Product:** 14,109 images (after grayscale + augmentation)
 - **Price:** 1,022 images for detecting price tags



3.2 Model Selection and Training


- Models Tested: YOLO v8, YOLO 11, YOLO v12
- Sizes Used: Medium (m) and Large (l)
- Training Framework: Ultralytics YOLO (PyTorch)
- **Dataset Split:** 90% training, 10% validation
- Augmentation: Grayscale (15%) + Noise (0.02%)
- Training Settings:
 - Image size: 640×640
 - o Epochs: 60
 - o Batch size: 16
 - o Optimizer: Adam

Goal: Find the best YOLO version and size for detecting products and price tags accurately and efficiently.

3.3 Model Architecture Comparison

YOLO 8

YOLO 11

YOLO 12

Final custom dataset configuration: Product Detection

Dataset	Size	Augmentation	Batch size	Epochs	Optimizer	Patient	Resolution	Class
Test 4: Version 1 14,109	YOLO v8,11,12 Size: medium (m)	Gray scales apply to 15% of images. Noise up to 0.02% of pixels.	16	60	Adam	10	640 x 640	63 classes
Test 4: Version 2 14,109	YOLO v8,11,12 Size: large (I)	Gray scales apply to 15% of images. Noise up to 0.02% of pixels.	16	60	Adam	10	640 x 640	63 classes

'Baby Products', 'Bags', 'BakingProducts', 'Batteries and light', 'Beef and Wild', 'Beverages', 'Bread', 'Burger', 'Canned and boxed ingredients', 'Cereal Musli Granola and Oats', 'Cheese', 'Chicken and Poultry', 'Cleaning Product', 'Clothing', 'Coffee and Tea', 'Containers', 'Cookies and Biscuits', 'Deli', 'Desserts', 'Diary', 'Fish', 'Footwear', 'Fruits and Berries', 'Garden and Outdoor', 'Home and Furniture', 'Hotdogs and Sausages', 'Household', 'Ice Cream', 'Kitchen equipment', 'Knekkebrod', 'Lamb', 'Meatballs and Medister', 'Nuts and Seeds', 'Office', 'Paper Rolls', 'Pasta and Noodels', 'Pastry', 'Personal Care', 'Pet Items', 'Pizza', 'Pork', 'Product', 'Protein Product', 'Ready made dish', 'Rice', 'Sauces Condiments Spices', 'Seafood', 'Snack and Chips', 'Snack and Sweets', 'Soup', 'Sport', 'Spread', 'Supliments and Vitamins', 'Tableware', 'Taco', 'Tools Electronics and Equipment', 'Toys and Games', 'Vegetables', 'Yarn', 'Yoghurt', 'pro - fire', 'pro - food', 'pro - kupp'

Final custom dataset configuration: Price Detection

Dataset	Model	Augmentation	Batch size	Epochs	Optimizer	Patient	Resolution	Class
1022 images	YOLO v8L	Standard YOLO augmentation	16	60	Adam	10	640 x 640	1 classes
	YOLO v11L	Standard YOLO augmentation	16	60	Adam	10	640 x 640	1 classes
	YOLO v12L	Standard YOLO augmentation	16	60	Adam	10	640 x 640	1 classes

4. Experimental Results


Tasks	Best Model	mAP50	Recall	Precision	Remarks	
Product Detection	YOLOv12-L	98.88%	96.2%	97.26%	Grayscale and noise augmentation significantly improved performance	
Price Detection	YOLOv11-L	99.5%	99.7%	99.3%	Most accurate for small price tags	
Generalization		YOLOv1	Strong performance across flyer layouts			
		YOLOv	Detected more items, but lower precision in classification			
Conclusion	YOLOv12-L = best overall; YOLOv11-L = best for price accuracy;					

5.OCR Pipeline

Fallback: Use YOLO class name

6. FastAPI Deployment

Purpose: Deploy the full pipeline as a real-time backend service for the Kupp system.

Key Features:

- Built with FastAPI for speed and simplicity
- Accepts image uploads via endpoint /analyze-flyer
- Runs YOLO detection + OCR and returns structured results

Output:

"height": 0.248
},
"timestamp": "2025-05-06104:10:08.922687"

ce. and image crops /Excel file with embedded product and price image

"details": "UKENS BUnnPRIS PRIOR Kyllingfilet NATURELL 650g€ 89: PRIORKYLLINGFILET 650gpr.pk 136.92/KG"

"product_image": "http://127.0.0.1:8000/crops/product_3a670f86.jpg", "price_crop_image": "http://127.0.0.1:8000/crops/price_7cc1547c.jpg",

JSON with product name, price, brand, weight, confidence, and image crops /Excel file with embedded product and price image

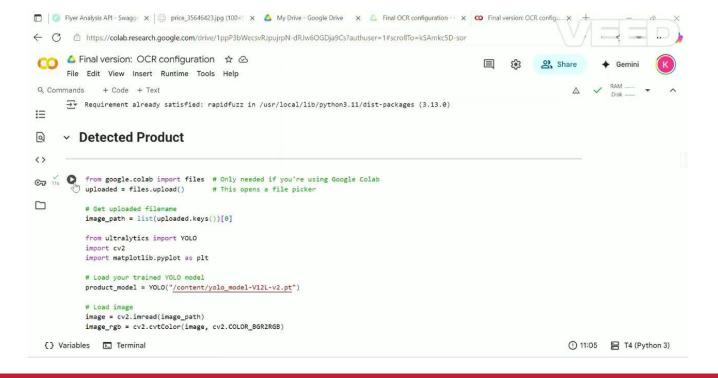
"product_class": "Chicken and Poultry", "product name": "Kyllingfilet Naturell",

"detection_confidence": 0.9461,
"is low confidence": false,

"weight": "650 g", "price_nok": "89.00 kr", "original price": null,

"x": 0.5029,

Deployment Environment:


Developed in PyCharm / Runs on local server using Uvicorn

Result:

Ready for real-world integration with VG Lab's Kupp platform.

7. Demo of System (10 minutes)

8. Risk Management

Lack of flyer-specific datasets	Created custom annotated dataset with Roboflow
Poor image quality and cluttered layout	Applied grayscale and noise reduction to improve clarity
Limited GPU resources in Colab	Switched to NVIDIA A100 and optimized batch sizes
OCR errors (e.g., Norwegian characters)	Used multiple OCR engines and regex cleaning
Integration challenges with Kupp system	Designed output format in JSON to match VG Lab requirements

10. Limitations and Future Work

Limitations:

- OCR struggles with Norwegian characters (Ø, Æ, Å)
- Inconsistent flyer layouts affect detection accuracy
- High GPU requirements limit accessibility
- Minor misclassifications in dense product areas

Future Work:

- Expand dataset with more Scandinavian flyer styles
- Improve OCR engine for better Norwegian text handling
- Add support for rotated text and multi-line price labels
- Integrate with full Kupp system and test on real users

Product Class	Matched Product	OCR Raw	Cleaned Price	Details	Product Image
Taco	tortillas	40 %	40%	TORTILL ALLE JAGOPRODUKTER FRA SÄNTA MARIA cra 15 @ EE HU	product_crops/Taco_1.jpg
Taco	tortillas	m4 ote maria dip achocheese		PR TORTILL ORIGINAL ALLE JACOPRODURTER FRA SANTA MARIA cra 15 @ EE HU	product_crops/Taco_1.jpg
Beverages	Beverages	20 tngn	20.00 kr	SOLO OG SOLO SUPER 151 +pant 1333	product_crops/Beverages_2.jpg
Hotdogs and Sausages	Grillpølse	35	35.00 kr	GILDE GRILLPØLSE 600 g pr. pk 58.33 /KG	product_crops/Hotdogs and Sausages_3.jpg
Coffee and Tea	Evergood	evergi 3fo2 ass vispanderer	3 for 2	TS rer 2. a 3 oe ae en mae EVERGOOD 250 G OG HELE BØNNER Fra 250 g pr. pk.	product_crops/Coffee and Tea_4.jpg
Pork	Kjøttdeig	fast lav pris 50,	50.00 kr	AL re TT KJØTTDEIG STORFE 400 g Billig Middag pr. pk 125.00 /KG	product_crops/Pork_5.jpg
Snack and Sweets	Snack and Sweets	9 06	9.06 kr	58.33 /KG & at	product_crops/Snack and Sweets_6.jpg
Pork	Stjernebacon	20,	20.00 kr	20, 2 0 pr I STJERNEBACON SKIVET 140 gpr.pk 128818 mm 1 ii	product_crops/Pork_7.jpg

11. Discussion

- YOLOv12-L had the best overall performance across flyer types
- Grayscale and noise augmentation significantly improved accuracy
- Real-time pipeline using FastAPI proved scalable and deployment-ready
- Combined YOLO + OCR is effective for automating flyer analysis
- This approach can also be applied in **retail tech**, **e-commerce**, and **digital catalogues**

12. Conclusion

- Built an AI pipeline using YOLO and OCR to extract data from flyers
- YOLOv12-L gave the best results with high accuracy
- Integrated with **FastAPI** for real-time use in the **Kupp app**
- Reduces manual work and improves user experience
- Shows strong potential for retail automation

Q&A

References

- Akbiyik, M. Eren. "Data Augmentation in Training CNNs: Injecting Noise to Images." arXiv preprint arXiv:2307.06855. July 12, 202 https://doi.org/10.48550/arXiv.2307.06855.
- Baek, Youngmin, Bado Lee, Dongyoon Han, Sangdoo Yun, and Hwalsuk Lee. "Character Region Awareness for Text Detection." arXiv. April 2019. https://doi.org/10.48550/arXiv.1904.01941.
- Bailly, Alexandre, Corentin Blanc, Élie Francis, Thierry Guillotin, Fadi Jamal, Béchara Wakim, and Pascal Roy. "Effects of dataset size an interactions on the prediction performance of logistic regression and Deep Learning Models." Computer Methods and Programs in Biomedicing 213, 106504. January 2022. https://doi.org/10.1016/j.cmpb.2021.106504.
- Chen, Xiaoxue, Lianwen Jin, Yuanzhi Zhu, Canjie Luo, and Tianwei Wang. "Text Recognition in the Wild." *ACM Computing Surveys* 54, no. (March 5, 2021): 1–3

https://doi.org/10.1145/3440756.

 Chuttur, Yasser, Yusuf Fauzel, and Sandy Ramasawmy. "Automatic Text Extraction from Digital Brochures: Achieving Competitiveness for Mauritius Supermarkets." In Soft Computing and its Engineering Applications. edited by Kanubhai K. Patel,

Deepak Garg, Atul Patel, and Pawan Lingras, 234-248. Communications in Computer and Information Science, vol 1374.

2021.

- Singapore: Springer, March 5,
- Dhatrika, Santhosh Kumar, D. Ramesh Reddy, and Nagaram Karan Reddy. 2025. "Real-Time Object Recognition for Advanced Driver-Assistance Systems (ADAS) Using Deep Learning on Edge Devices." *Procedia Computer Science* 252 (2025): 25–42.
- https://doi.org/10.1016/j.procs.2024.12.004.
 Franco, Annalisa, Davide Maltoni, and Serena Papi. "Grocery Product Detection and Recognition." Expert Systems with
 Applications
 81 (September 2017): 163–76.
- Gothai, E., Surbhi Bhatia, Aliaa M. Alabdali, Dilip Kumar Sharma, Bhavana Raj Kondamudi, and Pankaj Dadheech. "Design Features of Grocery Product Recognition Using Deep Learning." Intelligent Automation & Computing 34, no. 2 (2022):
- 1231–46.
 https://doi.org/10.32604/iasc.2022.026264.

https://doi.org/10.1016/j.eswa.2017.02.050.

https://doi.org/10.1007/978-981-16-0708-0 20

- Detection And Recognition." Applied Sciences 13, no. 5 (February 23, 2023): 2871. https://doi.org/10.3390/app13052871.
- Hidayatullah, Priyanto, Nurjannah Syakrani, Muhammad Rizgi Sholahuddin, Trisna Gelar, Refdinal Tubagus. "YOLOv8 to YOLO11: A Comprehensive Architecture In-depth Comparative Review." arXiv. January 2025. https://doi.org/10.48550/arXiv.2501.13400.

https://doi.org/10.3390/s21185995.

Houda Bichri, Adil Chergui and Mustapha Hain, "Investigating the Impact of Train / Test Split Ratio on the Performance of Pre-Trained Models International Journal of Advanced Computer Science and Applications(IJACSA). Custom Datasets." 15(2). 2024.

Guimarães, Vânia, Jéssica Nascimento, Paula Viana, and Pedro Carvalho. "A Review of Recent Advances and Challenges in Grocery Label

- http://dx.doi.org/10.14569/IJACSA.2024.0150235. Hsu, Chen-Ming, Chien-Chang Hsu, Zhe-Ming Hsu, Feng-Yu Shih, Meng-Lin Chang, and Tsung-Hsing Chen. "Colorectal Polyp Image Detection and
- Classification through Learning." 21, Grayscale **Images** and Deep Sensors no. 18 (2021): 5995.
- Jocher, Glenn, Alexis Schutzger, Muhammad Rizwan Munawar, Alex("LexBarou"), Paula Derrenger, Janjk4e, Ayush Chaurasiaet "Home-Ultralytics
- YOLO Docs." *Ultralytics* 2023. https://docs.ultralytics.com/.

Science, Engineering and Technology 8, no. 6 (June 2019).
 https://www.ijirset.com/upload/2019/june/81_Data.pdf.

 Lavanya, Gudala, and Sagar D. Pande. "Enhancing Real-Time Object Detection with YOLO Algorithm." School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India. (December 2023).

Kamble, Bhavna, Milind Nemade, and Vaishali Wadhe and Robonomics AI Private Limited. "Data extraction techniques for Data on Different Environments: A Review." iInternational Journal of Innovative Research in

- https://doi.org/10.4108/eetiot.4541.
 Mosquera, Harlinton Palacios, and Yakup Genc. "Recognition and Classifying Sales Flyers Using Semi-Supervised Learning." In 2019 4th International Conference on Computer Science and Engineering (UBMK), (September
- 2019): 1–6. https://doi.org/10.1109/ubmk.2019.8907146.
 Nair, Haripriya Surendran. Content Extraction from Marketing Flyers. Master's thesis, University of Skövde, 2022.
 - Accessed January 6, 2025. https://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-21536.

 Padilla, Rafael, Sergio L. Netto, and Eduardo A. da Silva. "A Survey on Performance Metrics for Object-Detection
- Algorithms." 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), July 2020, 237–42. https://doi.org/10.1109/iwssip48289.2020.9145130.

 Palyadi Sripiyas Kumar, and Krishna Prasad. "A Unified Framework for Text Extraction and Plagiarism Detection
- Palvadi, Srinivas Kumar, and Krishna Prasad. "A Unified Framework for Text Extraction and Plagiarism Detection in Image-Based Content Using OCR and NLP." *Cuestiones de Fisioterapia* 54, no. 1 (2025): 111-120. https://doi.org/10.48047/CU/54/01/132-141.

- Pannoy, Nakul, Sarayut Nonsiri, and Supawee Makdee. "Object Detection for Retail Product Recognition." 2024 9th

 International Conference on Business and Industrial Research (ICBIR), May 23, 2024, 1547–52.

 https://doi.org/10.1109/UBMK.2019.8907146.
- Patel, Chirag., Atul Patel and Dharmendra Patel "Optical Character Recognition by Open Source OCR Tool Tesseract: A Case Study". International Journal of Computer Applications (0975 8887) Volume 55– No. 10, October 2012. http://doi.org/10.5120/8794-2784.
- Patel, Saumil R. 2024. Role of Computer Vision in Retail Stores. Doctoral dissertation, Lamar University. (December 2024). https://doi.org/10.13140/RG.2.2.33928.94729
 Rajmod, Vijay, Ganesh Derkar, Prashik Nagrale, Nilesh Awari, and Mrs. Pranali Lokhande. "Text Extraction from Image

Using OCR." in 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), (January

7, 2025): 113–16. https://doi.org/10.1109/icmcsi64620.2025.10883061.

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You Only Look Once: Unified, Real-Time Object

- Detection." *arXiv*. June 8, 2015. https://doi.org/10.48550/arXiv.1506.02640

 Roboflow (2025). "What is YOLO? The Ultimate Guide." https://blog.roboflow.com/guide-to-yolo-models/.
- Roboflow (2025). "YOLOv12 Object Detection Model: What is, How to Use." https://roboflow.com/model/yolov12.

2024 https://doi.org/10.48550/arXiv.2406.19407.
 Selvam, Prabu, and Joseph Abraham Koilraj. "A Deep Learning Framework for Grocery Product Detection And

November

in

Accuracy."

Recognition."

of

ve-your-ocr-accuracy/.

Train-Validation

Pyimagesearch.

https://doi.org/10.48550/arXiv.2106.15615.

Food Analytical

https://doi.org/10.1109/ICDAR.2007.4376991.

Splitting

Rosebrock, Adrian. "Tesseract Page Segmentation Modes (PSMs) Explained: How to Improve Your OCR

https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-impro

Saunshi, Nikuni, Arushi Gupta, and Wei Hu. 2021. "A Representation Learning Perspective on the Importance

Meta-Learning."

Sapkota, Ranjan, Rizwan Qureshi, Marco Flores Calero, Chetan Badjugar, Upesh Nepal, Alwin Poulose, Peter

Zeno, Uday Bhanu Prakash Vaddevolu, Sheheryar Khan, Maged Shoman, Hong Yan, Manoj Karkee. "YOLO12 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once (YOLO) Series." *arXiv*. June 12.

Methods 15, no. 12 (August

2021.

Accessed

preprint

13,

2022):

arXiv

March

2025.

arXiv:2106.15615.

3498-3522.

15,

- https://doi.org/10.1007/s12161-022-02384-2.

 Smith, Ray. "An Overview of the Tesseract OCR Engine." *In Proceedings of the Ninth International Conference on Document Analysis and Recognition* (ICDAR 2007), 629-633.Curitiba, Brazil: IEEE, 2007.
- Tesseract OCR. 2023. Tesseract Open Source OCR Engine https://tesseract-ocr.github.io/